
Shadow removal 



When taking a picture, what 
color is a (Lambertian) surface? 





What if it’s not a cloudy day? 
 



Region lit by 

sunlight and 

skylight 

Region lit by 

skylight only 



What great things could we do if 
we could easily find shadows? 









An Intrinsic Image 

• What effect is the lighting having, irrespective 
of surface materials? 

 

• What is the surface reflectance, irrespective of 
lighting?  

 

          Original       Lighting/Shading  Reflectance 

Tappen et al. PAMI’05 



Pursuit of Intrinsic Images (1) 

• Lightness and Retinex Theory 

– Land & McCann ’71 

 

• Recovering Intrinsic Scene Characteristics From Images 

– Barrow & Tenenbaum ‘78 



Pursuit of Intrinsic Images (2) 

• Painted Polyhedra - ICCV’93 

 

• Image Sequences - ICCV’01 

 

• Single Image - NIPS’03 

 

• Entropy Minimization - ECCV’04 



Pursuit of Intrinsic Images (2) 

• Painted Polyhedra - ICCV’93 (Generative) 

 

• Image Sequences - ICCV’01   (Discriminative) 

 

• Single Image - NIPS’03       (Discriminative) 

 

• Entropy Minimization - ECCV’04 (Generative) 



Image Sequences 

• Deriving Intrinsic Images from Image Sequences 

– Weiss ICCV’01 

 

• For static objects, multiple frames 



Problem Formulation 

Given a sequence of T images  

in which reflectance is constant over  

time and only the illumination 

changes, can we solve for a single 

reflectance image and T  

Illumination images                   ? 
 
 

Still completely ill-posed : at every pixel there are T 
equations and T+1 unknowns. 
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• Prior based on intuition:  

– derivative-like filter 
outputs of L tend to be 
sparse 
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(move to log-space) 
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fn = one of N filters like  1   -1 



• Variety of responses has Laplacian-shaped 
 distribution 
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Toy Example 



Example Result 1 

• Einstein image is translated diagonally 

 4 pixels per frame 



Example Result 2 

• 64 images with variable lighting from Yale 

Face Database 



Intrinsic Images by             
Entropy Minimization 

(Midway Presentation, by Yingda Chen) 

Graham D. Finlayson, Mark S. Drew and Cheng Lu, ECCV, 
Prague, 2004 



 

Project Goals: 

 
     

 Obtain the intrinsic image by removing shadows from 

images : 

• Without camera calibration (no knowledge about the 

imagery source) 

 

• Based on one single image (instead of multiple image 

arrays) by entropy minimization 
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How an Image is Formed? 

Camera responses depend on 3 factors:  

• Light (E),  

• Surface (S),  

• Camera sensor (R,G, B) 

In an RGB image, the R, G , B 

components are obtained by: 

(*) 



Planck’s Law  

 

 

 

 
 

•  Blackbody:  
 A blackbody is a hypothetical object that emits radiation at a maximum rate for 

its given temperature and absorbs all of the radiation that strikes it. 

 Illumination sources such as             can be well approximately as a blackbody 

radiator.  

 

• Planck’s Law [Max Planck, 1901] 

 Planck’s Law defines the energy emission rate of a blackbody , in unit of 
watts per square meter per wavelength interval, as a function of wavelength    

(in meters) and temperature T (in degrees Kelvin).  
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Planck’s Law (cont.) 
 

The temperature of a lighting source and the wavelength together 

determine the relative amounts radiation being emitted (color of the 

illuminator).  
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Given the  intensity of the radiation I, the Planck’s law gives the 

spectral power of the lighting source: 



is Blue;                      is Red;  

 



Image formation for Lambertian surface 

RR GG BB

Assume idea camera sensors: 
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Analysis of the components in image 

formation 

Depends on the surface property only Depend on property of the illumination  

Need some manipulations to get  

rid of the illumination dependence  



How to remove shadows (illumination)?  

Define a 2-D chromaticity vector V,  
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The 2-D vector V forms a straight line in the space of logs of ratios, 

the slope of the which is determined by T (i.e. by illumination color). 

Project the 2D log ratios into the direction     , the 1-D grayscale 

invariant image can be obtained.          is the direction orthogonal to 

vector  
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Shadow which occurs when there is a change in light 

but not surface will disappear in the invariant image  

e

e



How to remove shadows (illumination)? (cont.) 



 The key of the obtaining the invariant image is to determine the 
right projection direction. For a calibrated camera whose sensor 
sensitivity is known, the task is relatively easy.  

• Question: How to determine the projection direction for 
images from Uncalibrated Cameras?  

 Answer: Problematic, but artificial calibration can still be 
performed by obtaining a series of image from the same 
camera.  

 

• Question: How to determine the projection direction 
for images whose source is unknown?  

 

 
 

How to remove shadows (illumination) ? (cont. II) 
 



Entropy minimization  

Correct Projection Incorrect Projection 



Entropy minimization (cont.) 

The scalar values can be encoded into a grayscale image,  

and the entropy be calculated as 

( ) log ( )i i

i

H p x p x

For each                        , we can obtain an corresponding 

entropy. As the more “spread-out” distribution results in a 

larger entropy value,  the projection  direction    that 

produces the minimum entropy is the correct projection 

direction 

Given projection angle   , the projection result in a scalar value   
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1, 2, 180



Assumptions? 
•  Delta sensor functions of camera 

 

 

 

 

 

• The image must be unbiased of R,G,B 
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This assumption is idealized, but  

experiments show that it performs  

reasonably well. 

This is NOT true for many images, which can be “reddish”, 

“bluish” or “greenish” in color. So some more dedicated 

approach should be introduced to remove (or at least 

suppress) the potential bias.  



Geometric Mean Invariant Image 

Use the geometric mean as the reference color channel when 

taking the log ratios, so we will not favor for any particular color 
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Where the K’s are just  

constants 

The geometric mean is unbiased, however, the invariant image is a projection  

from 2-D space into 1-D grayscale. The log ratios vector       is 3-D. 



Geometric Mean Invariant Image (cont.) 

• From 3-D to 2-D before we can get the invariant. 

    A 2 x 3       matrix can do this by  

   The transform should satisfy: 

 A straight line in the 3-D space is still straight after the transformation 

• How do we find     ? 
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Geometric Mean Invariant Image (cont. II) 

•  With             , we converted the 3-D log ratios space into 2-D, 

but with no color bias, the invariant image is then achieved 

by                           ,    is the correct projection angle, and 

we are back to the original track. 

 

•  Obtain    by entropy minimization: 
• Decide the number of bins by Scott’s rule: 

 

 

• The probability of the ith bin is 

 

• The entropy is calculated as   
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Midway Results: invariant image 

Original Image     Invariant Image 



Entropy Minimization  
(Camera: Nikon CoolPix8700) 
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Edge in Original Image    Edge in Invariant Image 



Original Image     Invariant Image 



Entropy Minimization  

(Camera: Nikon CoolPix8700) 
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Edge in Original Image    Edge in Invariant Image 



Original Image     Invariant Image 



Entropy Minimization  

(Camera: Nikon CoolPix8700) 
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Edge in Original Image    Edge in Invariant Image 



Entropy Minimization  
(Camera: HP-912, better camera sensors?) [from author’s website] 
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Is the projected 1-D data really “colorless”?  

We can recover 2-D chromaticity along the line 



Invariant chromaticity Image  
• Recall that the grayscale image                              

 let             , where                          , the 3-D log ratio  is 

recovered by   

 
• Invariant chromaticity image:   

 

 

       is the invariant chromaticity image that presents the color 
information inherent in the 1-D projection yet absent in the 
grayscale invariant image  
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Expected Results :  

Original 

Entropy Minimization 

Invariant 

Shadow Edge 

Intrinsic image 



Sweep Angle of Projection 

../EntropyMinimizFinlayson/intrinsic_entropyMpeg4V2.avi


Image Chromaticity 

Recovered Chromaticity 

Entropy Plot 











Limitations of Shadow Removal 

• Only Hard shadows can be removed 

• No overlapping of object and shadow 
boundaries 

• Planckian light sources 

• Narrow band cameras are idealized 

 

• Reconstruction methods are texture-dumb 


